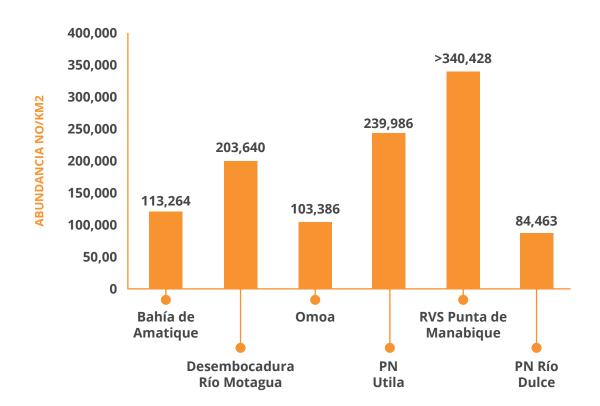


Plásticosfera Problemas vectoriales GUÍA DE TRABAJO


Nombre:

Introducción:

La producción masiva del plástico y el consumo desmedido del mismo, provocan una acumulación gigantesca. A partir de esto hay una gran acumulación de plástico en la superficie de la Tierra y la mayoría van a dar al océano. El plástico que llega al océano es producido en ciudades y son los ríos los que lo llevan al océano (Rochman, 2018).

El plástico se degrada al exponerse a los rayos del sol (UV), agua, viento y acción de microorganismos (bacterias y hongos). Al degradarse se rompe en pequeñas partículas llamadas Microplásticos (Izquierdo & López, 2021). Frias y Nash (2019) proponen la siguiente definición: "Los microplásticos son cualquier partícula sólida sintética o matriz polimérica, de forma regular o irregular, de tamaño comprendido entre 1 µm y 5 mm, de origen de fabricación primario o secundario y que son insolubles en agua."

En la expedición Plasticósfera 2021 realizada en el mar Caribe de Guatemala y Honduras por un grupo científico multidisciplinario se determinó que en las 7 muestras recolectadas hay microplásticos, siendo Punta de Manabique (Guatemala) el que presentó mayor cantidad (>340,428 partículas/km2), seguido por Parque Nacional Utila (Honduras) (Gráfica 1). Este informe concluye que la solución debe de buscarse en el origen del problema, a través del rechazo al plástico de un solo uso (Izquierdo & López, 2021).

Instrucciones:

A continuación, se te presentan un problema en base al tema de microplásticos y . Para cada pregunta deje constancia de su trabajo.

- 1. Identifica si estos ejemplos es una unidad escalar o vectorial
 - a. Los microplásticos son partículas con un diámetro inferior a 5mm.
 - b. En Honduras este año (2021) se han recolectado 210 toneladas de desechos sólidos por parte del Gobierno de Guatemala.
 - c. La muestra tomada en la desembocadura del Motagua el barco iba a una velocidad de 2.6 nudos, durante una distancia de 4.4km, en una dirección noroeste.
- 2. Una partícula de microplástico flota en el océano Atlántico. Su desplazamiento se describe a continuación:

Viaja 3km 90°, luego vira y se traslada a 5 km a 73°. Su siguiente movimiento son 2km a 300°, 2km a 40° y finalmente 5km 270°.

¿Cuál es el vector resultante del recorrido de la partícula de microplástico? Compruébalo por el método de polígono.

Lista de cotejo

No.	Descripción	Distribución %	En qué medida lo logra
1.	Identificación de documento	10	/10
2.	Pregunta 1 – Identificación de ejemplos	15	/15
3.	Pregunta 2 - Elabora polígono correctamente	45	/45
4.	Pregunta 3 - El vector resultante es correcto	30	/30
	Total	100	/100

Referencia

Izquierdo, S. & López, N. (2021). Plasticósfera Reporte Expedición 2021. Contaminación por microplástico en el mar caribe de Guatemala y Honduras. Rescue The Planet.

Albert, L. A. (2007). Capítulo 4. Contaminación ambiental. Origen, clases, fuentes y efectos. In Revista Internacional de Andrologia (Vol. 5, Issue 4, pp. 332–336). https://doi.org/10.1016/S1698-031X(07)74080-3

Frias, J. P. G. L., & Nash, R. (2019). Microplastics: Finding a consensus on the definition. Marine Pollution Bulletin, 138(September 2018), 145–147. https://doi.org/10.1016/j.marpolbul.2018.11.022

Miranda, D. (17 noviembre 2021). 20 datos sobre el problema del plástico en el mundo. National Geographic España. https://www.nationalgeographic.com.es/mundo-ng/20-datos-sobre-problema-plastico-mundo_15282

Rochman, C.M. (2018). Microplastics research- from sink to source. Science 360(6384): 28-29. DOI: 10.1126/science.aar7734

